RNA binding specificity of hnRNP proteins: a subset bind to the 3' end of introns.

نویسندگان

  • M S Swanson
  • G Dreyfuss
چکیده

The binding of hnRNP proteins to pre-mRNAs in nuclear extracts, and as isolated proteins, was studied by using monoclonal antibody immunopurification of hnRNP proteins bound to RNase T1-generated fragments. Several major hnRNP proteins, A1, C and D, bind specifically to the 3' end of introns within a region containing the conserved polypyrimidine stretch between the branch site and the 3' splice site. Mutations which alter the conserved 3' splice site dinucleotide AG strongly impair or abolish the binding of the A1 protein as well as of an anti-Sm reactive component(s) to this region. The A1, C and D proteins do not bind efficiently to fragments of either bacterial RNA or the intronless spliced product (mRNA). The binding of these proteins at the 3' end of the intron does not require addition to the extract of exogenous ATP, but remains after ATP addition. These findings demonstrate that several hnRNP proteins have RNA binding specificities on pre-mRNA, and suggest a model for hnRNP particle structure and assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous nuclear ribonucleoprotein a1 binds to the 3'-untranslated region and mediates potential 5'-3'-end cross talks of mouse hepatitis virus RNA.

The 3'-untranslated region (3'-UTR) of mouse hepatitis virus (MHV) RNA regulates the replication of and transcription from the viral RNA. Several host cell proteins have previously been shown to interact with this regulatory region. By immunoprecipitation of UV-cross-linked cellular proteins and in vitro binding of the recombinant protein, we have identified the major RNA-binding protein specie...

متن کامل

Looping Out Introns to Help Splicing

February 2006 | Volume 4 | Issue 2 | e41 | e34 One of the most surprising discoveries in molecular biology was that a gene’s coding region is broken up into smaller pieces (the exons) interrupted by noncoding portions called introns. After the DNA is transcribed into RNA, and before the RNA can leave the nucleus, the introns must be cut out and the exons spliced together. Since introns were dis...

متن کامل

A Novel Design Principle for the Insect Odorant Receptor

February 2006 | Volume 4 | Issue 2 | e41 | e34 One of the most surprising discoveries in molecular biology was that a gene’s coding region is broken up into smaller pieces (the exons) interrupted by noncoding portions called introns. After the DNA is transcribed into RNA, and before the RNA can leave the nucleus, the introns must be cut out and the exons spliced together. Since introns were dis...

متن کامل

A New Window into Structural Plasticity in the Adult Visual Cortex

February 2006 | Volume 4 | Issue 2 | e41 | e34 One of the most surprising discoveries in molecular biology was that a gene’s coding region is broken up into smaller pieces (the exons) interrupted by noncoding portions called introns. After the DNA is transcribed into RNA, and before the RNA can leave the nucleus, the introns must be cut out and the exons spliced together. Since introns were dis...

متن کامل

The Sirt1 Gene Promotes Insulin Secretion in Accord with Diet

February 2006 | Volume 4 | Issue 2 | e41 | e34 One of the most surprising discoveries in molecular biology was that a gene’s coding region is broken up into smaller pieces (the exons) interrupted by noncoding portions called introns. After the DNA is transcribed into RNA, and before the RNA can leave the nucleus, the introns must be cut out and the exons spliced together. Since introns were dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 7 11  شماره 

صفحات  -

تاریخ انتشار 1988